home *** CD-ROM | disk | FTP | other *** search
- GEMV(3F) Last changed: 11-2-98
-
-
- NNAAMMEE
- SSGGEEMMVV, DDGGEEMMVV, CCGGEEMMVV, ZZGGEEMMVV - Multiplies a real or complex vector by a
- real or complex general matrix
-
- SSYYNNOOPPSSIISS
- Real
-
- CCAALLLL SSGGEEMMVV ((_t_r_a_n_s,, _m,, _n,, _a_l_p_h_a,, _a,, _l_d_a,, _x,, _i_n_c_x,, _b_e_t_a,, _y,, _i_n_c_y))
-
- Double precision
-
- CCAALLLL DDGGEEMMVV ((_t_r_a_n_s,, _m,, _n,, _a_l_p_h_a,, _a,, _l_d_a,, _x,, _i_n_c_x,, _b_e_t_a,, _y,, _i_n_c_y))
-
- Complex
-
- CCAALLLL CCGGEEMMVV ((_t_r_a_n_s,, _m,, _n,, _a_l_p_h_a,, _a,, _l_d_a,, _x,, _i_n_c_x,, _b_e_t_a,, _y,, _i_n_c_y))
-
- Double complex
-
- CCAALLLL ZZGGEEMMVV ((_t_r_a_n_s,, _m,, _n,, _a_l_p_h_a,, _a,, _l_d_a,, _x,, _i_n_c_x,, _b_e_t_a,, _y,, _i_n_c_y))
-
- IIMMPPLLEEMMEENNTTAATTIIOONN
- IRIX systems
-
- DDEESSCCRRIIPPTTIIOONN
- SSGGEEMMVV and DDGGEEMMVV multiply a real vector by a real general matrix.
-
- CCGGEEMMVV and ZZGGEEMMVV multiply a complex vector by a complex general matrix.
-
- These routines perform one of the following matrix-vector operations:
-
- _y <- _a_l_p_h_a _A_x + _b_e_t_a _y
- _T
- _y <- _a_l_p_h_a _A _x + _b_e_t_a _y
- _H
- _y <- _a_l_p_h_a _A _x + _b_e_t_a _y
-
- where
-
- * where _a_l_p_h_a and _b_e_t_a are scalars,
-
- * _x and _y are vectors
-
- * _A is an _m-by-_n general matrix
- _T
- * _A is the transpose of _A
- _H
- * _A is the conjugate transpose of _A
-
- These routines have the following arguments:
-
- _t_r_a_n_s Character*1. (input)
- Specifies the operation to be performed:
-
- _t_r_a_n_s = 'N' or 'n': _y <- _a_l_p_h_a _A_x + _b_e_t_a _y
-
- _T
- _t_r_a_n_s = 'T' or 't': _y <- _a_l_p_h_a _A _x + _b_e_t_a _y
-
- _T
- _t_r_a_n_s = 'C' or 'c': _y <- _a_l_p_h_a _A _x + _b_e_t_a _y (SSGGEEMMVV, DDGGEEMMVV),
- or
- _H
- _y <- _a_l_p_h_a _A _x + _b_e_t_a _y (CCGGEEMMVV, ZZGGEEMMVV)
-
- _m Integer. (input)
- Specifies the number of rows in matrix _A. _m >= 0.
-
- _n Integer. (input)
- Specifies the number of columns in matrix _A. _n >= 0.
-
- _a_l_p_h_a Scalar alpha. (input)
- SSGGEEMMVV: Real.
- DDGGEEMMVV: Double precision.
- CCGGEEMMVV: Complex.
- ZZGGEEMMVV: Double complex.
-
- _a array of dimension (_l_d_a,_n). (input)
- SSGGEEMMVV: Real array.
- DDGGEEMMVV: Double precision array.
- CCGGEEMMVV: Complex array.
- ZZGGEEMMVV: Double complex array.
- Before entry, the leading _m-by-_n part of array _a must
- contain the matrix of coefficients.
-
- _l_d_a Integer. (input)
- Specifies the first dimension of _a as declared in the
- calling program. _l_d_a >= MMAAXX(1,_m).
-
- _x Array of dimension 1+(_n-1) * |_i_n_c_x| when _t_r_a_n_s = 'N' or 'n',
- and at least 1+(_m-1) * |_i_n_c_x| otherwise. (input)
- SSGGEEMMVV: Real array.
- DDGGEEMMVV: Double precision array.
- CCGGEEMMVV: Complex array.
- ZZGGEEMMVV: Double complex array.
- Contains the vector _x. Before entry, the incremented array
- _x must contain the vector _x.
-
- _i_n_c_x Integer. (input)
- Specifies the increment for the elements of _x. _i_n_c_x must
- not be 0.
-
- _b_e_t_a Scalar beta. (input)
- SSGGEEMMVV: Real.
- DDGGEEMMVV: Double precision.
- CCGGEEMMVV: Complex.
- ZZGGEEMMVV: Double complex.
- When _b_e_t_a is supplied as 0, _y need not be set on input.
-
- _y Array of dimension 1+(_m-1) * |_i_n_c_y| when _t_r_a_n_s = 'N' or 'n',
- and at least 1+(_n-1) * |_i_n_c_y| otherwise. (input) (input and
- output)
- SSGGEEMMVV: Real array.
- DDGGEEMMVV: Double precision array.
- CCGGEEMMVV: Complex array.
- ZZGGEEMMVV: Double complex array.
- Contains the vector _y. Before entry with _b_e_t_a as non-zero,
- the incremented array _y must contain the vector _y. On exit,
- _y is overwritten by the updated vector _y.
-
- _i_n_c_y Integer. (input)
- Specifies the increment for the elements of _y. _i_n_c_y must
- not be 0.
-
- NNOOTTEESS
- SSGGEEMMVV, DDGGEEMMVV and CCGGEEMMVV, ZZGGEEMMVV are Level 2 Basic Linear Algebra
- Subprograms (Level 2 BLAS).
-
- When working backward (_i_n_c_x < 0 or _i_n_c_y < 0), each routine starts at
- the end of the vector and moves backward, as follows:
-
- _x(1-_i_n_c_x * (_n-1)), _x(1-_i_n_c_x * (_n-2)) , ..., _x(1)
-
- _y(1-_i_n_c_y * (_n-1)), _y(1-_i_n_c_y * (_n-2)) , ..., _y(1)
-
- SSEEEE AALLSSOO
- This man page is available only online.
-